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Outline

The outline of this lecture is

Outline
! Standard Model overview
! Electroweak breaking
! Higgs and Goldstone bosons
! Fermion gauge interactions
! Yukawa interactions
! Neutral currents
! Charged currents and CKM mixing
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Standard Model overview

! The Standard Model (SM) is a gauge theory based on
the group

Gauge group

SU(3) ⊗ SU(2) ⊗ U(1)Y

! SU(3) describes the strong interactions (QCD) ⇒
Paolo Nason’s lectures

! Since the gauge interactions conserve helicity we can
decompose fermions as

f = fL + fR , fL =
1

2
(1 − γ5)f , fR =

1

2
(1 + γ5)f

! The SM choice was to place fL in SU(2) doublets and
fR in SU(2) singlets

! One can instead replace fR by

fR → f c
L = C f̄ T , where C=charge conjugation matrix
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! They appear in at least three generations

SM fermions
(

νi

#−i

)

L

#−iR [#+
iL]

(
uα
i

dα
i

)

L

uα
iR [uc α

iL ] dα
iR [dc α

iL ]

α = colors

i = generations

Q = T3 + Y

(1, 2)−1/2 + (3, 2)1/6

(1, 1)1 + (3̄, 1)−2/3 + (3̄, 1)1/3

! The pure gauge boson part lagrangian is

Electroweak gauge bosons lagrangian

Lgauge = −
1

4
GµνaG

µνa −
1

4
FµνF

µν + LGF + LFP

Gµνa ≡ ∂µWνa − ∂νWµa + gεabcWµbWνc

Fµν = ∂µBν − ∂νBµ
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! To properly quantize the theory we need the
Faddeev-Popov gauge fixing

Faddeev-Popov lagrangian (symmetric phase)

LGF+FP =
1

2ξ
(∂µW a

µ)2 +
1

2ξ′
(∂µBµ)2 + c̄a(−∂µDab

µ )cb

Dab
µ = ∂µδab + gεacbW c

µ

! The interaction of gauge bosons with fermions is
achieved in the gauge invariant lagrangian

Fermion lagrangian

Lfer = i
∑

fL

f̄Lγ
µ(∂µ − ig

σa

2
Wµa − ig ′YfLBµ)fL

+i
∑

fR

f̄Rγµ(∂µ − ig ′YfRBµ)fR
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Electroweak breaking

! In the Standard Model the electroweak symmetry is
spontaneously broken by the Higgs mechanism where an
SU(2)L doublet Higgs boson is needed

Higgs mechanism

H =

(
χ+

H0

)

1/2

H̃ = iσ2H
∗ =

(
H̄0

−χ−

)

−1/2

LHiggs =

∣∣∣∣(∂µ − ig
σa

2
Wµa − ig ′ 1

2
Bµ)H

∣∣∣∣
2

− V (H)

V (H) = −m2|H|2 + λ|H|4
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! By minimization of the Higgs potential one obtains the
VEV

〈H〉 =
v√
2

(
0
1

)
, v =

√
m2

λ
, m2

h = 2λv2

! By replacing H = 〈H〉 + Ĥ in LHiggs one obtains

v2

8
(−g2WµaW

µa + 2gg ′BµW 3µ − g ′2BµBµ)

= −
1

4
g2v2W +

µ W−
µ

−
1

4
v2
(

W
µ
3 Bµ

)( g2 −gg ′

−gg ′ g ′2

)(
W 3

µ

Bµ

)

W±
µ =

W 1
µ ± iW 2

µ√
2
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! The gauge boson mass spectrum is then

Gauge boson masses and relations

mW± =
1

2
gv ; mZ =

1

2

√
g2 + g ′2v ; mA = 0

Zµ = cos θW W 3
µ − sin θW Bµ; Aµ = cos θW W 3

µ + sin θW Bµ

tan θW =
g ′

g

! The mixing angle can be put in relation with gauge
boson masses as

sin2 θW = 1 −
m2

W

m2
Z

! The muon decay lifetime determines the relation

v2 =
1√
2Gµ

= (246.22 GeV)2
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Higgs and Goldstone bosons

! We can write the Higgs field as

H(x) =

(
χ2 + iχ1

1√
2
(v + h) − iχ3

)

= e iχa(x)σa/v

(
0

1√
2
(v + h(x) )

)

! The unitary gauge is defined as (χa → 0)

H(x) → e−iχa(x)σa/v H(x) =
1√
2

(
0

v + h(x)

)

! In the unitary gauge the gauge boson propagators

∆µν
VV (q) =

−i

q2 − m2
V + iε

[
gµν −

qµqν

m2
V

]
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! It is more convenient to work in Rξ gauge characterized
by the GF lagrangian

LGF =
−1

2ξ

[
2(∂µW +

µ −iξmW χ+)(∂µW−
µ −iξmW χ−)

+(∂µZµ−iξmZχ0)2 + (∂µAµ)2
]

! The propagators in Rξ gauge

Rξ gauge

∆µν
VV (q) =

−i

q2 − m2
V + iε

[
gµν + (ξ − 1)

qµqν

q2 − ξm2
V

]

∆χ0χ0(q2) =
i

q2 − ξm2
Z + iε

∆χ±χ∓(q2) =
i

q2 − ξm2
W + iε
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! ξ = 0 is the Landau gauge
! ξ = 1 is the ’t Hooft-Feynman gauge (the qµqν term is

absent
! ξ → ∞ is the Unitary gauge.
! In gauge boson propagators the last term (−qµqν/m2

V )
leads to very complicated cancellations in the invariant
amplitudes involving the exchange of V bosons at high
energies and, even worse, make the renormalization
program very difficult to carry out, as the latter usually
makes use of four–momentum power counting analyses
of the loop diagrams.

! The Goldstone boson propagators vanish in the unitary
gauge

! The Higgs propagator

∆hh(q
2) =

i

q2 − m2
h + iε
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! The couplings of the Higgs bosons to gauge bosons

Higgs-gauge bosons

•h

Vµ

Vν

ghVV = −igµν 2m2
V /v

•h

h

Vµ

Vν

ghhVV = −igµν 2m2
V /v2
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! The self-couplings of the Higgs bosons

Higgs-Higgs bosons

•h

h

h

ghhh = i 3m2
h/v

•h

h

h

h

ghhhh = i 3m2
h/v

2
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Fermion gauge interactions
Using the lagrangian Lfer one obtains the interaction of
fermions with gauge bosons eigenfunctions in the broken
phase

! The weak isospin currents of SU(2) are

Jµ
a =

∑

fL

f̄Lγ
µ σa

2
fL

! The hypercharge current is

Jµ
Y =

∑

fL

f̄Lγ
µYfLfL +

∑

fR

f̄RγµYfR fR

! They are coupled to gauge bosons (W ,Z ,A) as

gJµ
a W µ

a + g ′J
µ
Y Bµ

with the decomposition

W 3
µ = cos θW Zµ+sin θW Aµ; Bµ = − sin θW Zµ+cos θW Aµ
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! W±
µ couple to the weak charged currents

Charged currents lagrangian

LCC
int =

g√
2
(W +

µ Jµ
− + W−

µ Jµ)

Jµ
± =

1

2
(Jµ

1 ± iJµ
2 )

! The electromagnetic interactions are

Electromagnetic lagrangian

LEM
int = eJEM

µ Aµ

JEM
µ =

∑

f

[f̄LγµQfL + f̄RγµQfR ]

Q = T3 + Y ; e =
gg ′

√
g2 + g ′2
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! Zµ couples to neutral current

Neutral current lagrangian

LNC
int =

√
g2 + g ′2J0

µZµ

J0
µ = J3

µ − sin2 θW JEM
µ

! Notice that the neutral currents

Neutral currents

∝ f̄L,RγµfL,R

and charged currents

Charged currents

∝ ūL,RγµdL,R

are all flavor-diagonal in the interaction basis.
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Diagrammatically the Feynman rules are

Fermion gauge interactions

ie
s
√

2
γµPL

ie
sc

γµ [(T 3
f − Qf s

2)PL

−Qf s
2PR ]

ieQf γµ

f

f̄

f

f̄

µ
−

ν̄

Aµ

Zµ

W −
µ
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Yukawa interactions
! Fermion masses and mixing appear from the Yukawa

interactions

Quarks Yukawa lagrangian

LY = −Y U
ij (ūL, d̄L)i

(
H̄0

−χ−

)
uRj

−Y D
ij (ūL, d̄L)i

(
χ+

H0

)
dRj + h.c .

Higgs fermion interactions

•h

f

f̄

gHff = i mf /v
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Goldstone bosons fermion interactions
!

•
χ0

f

f̄

gχ0ff = −2T 3
f mf /v

•
χ−

u

d̄

gχ−ud = − i√
2v

Vud [md(1 − γ5) − mu(1 + γ5)]
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! After electroweak breaking it gives rise to the mass
terms

Mass lagrangian

Lmass = −
v√
2
ūi
LY

U
ij uj

R + h.c .

−
v√
2
d̄ i
LY

D
ij d

j
R + h.c .

! We can diagonalize the bilinear mass terms by unitary
transformations

uL,R → V u
L,RuL,R ; dL,R → V d

L,RdL,R

interaction → mass eigenstates basis
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! The mass lagrangian becomes

Mass lagrangian

Lmass = −
v√
2
ūLV

u†
L Y UV u

RuR + h.c .

−
v√
2
d̄LV

d†
L Y DV d

R dR + h.c .

! With
V u†

L Y UV u
R ∝ diag(mu,mc ,mt)

V
d†
L Y DV d

R ∝ diag(md ,ms ,mb)
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Neutral currents

! Neutral currents which were flavor-diagonal in the
interaction basis remains flavor-diagonal in the mass
eigenstate basis

Neutral currents in mass eigenstates

f̄L,RγµfL,R → f̄L,RV f †
L,RγµV f

L,R fL,R = f̄L,RγµfL,R

! This ensures that FCNC will not be generated at tree
level
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Charged currents: CKM mixing

! Charged currents which were flavor-diagonal in the
interaction basis do not remain flavor diagonal in the
mass eigenstate basis

Charged currents in mass eigenstates

W +
µ ūLγ

µdL → W +
µ ūLγ

µV
u†
L V d

L dL = W +
µ ūLγ

µVCKMdL

VCKM = V u†
L V d

L

! VCKM is the Cabbibo-Kobayashi-Maskawa matrix
defined as

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb
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! A standard parametrization for the CKM matrix is

VCKM =



c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13





! A good approximation is

VCKM =




1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1





! Where λ = s12, s23 = Aλ2, s13e
iδ = Aλ3(ρ + iη)

! λ + sin θC = 0.23
! The experimental values for the VCKM entries can be

found in RPP
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! The GIM mechanism explains the smallness of processes
as KL → µ+µ− as given by the diagrams in the figure

GIM mechanism

! CKM mixing leads to the three diagrams where the
vertical line is (u, c , t).

! In the limit of exact flavor symmetry the three diagrams
cancel by virtue of

∑

i=u,c,t

VisV
∗
id = 0

! Exercise: Estimate the suppression of the previous
process



Electroweak
symmetry
breaking

Mariano Quirós

Outline

Unitarity bounds

Triviality bound

Stability bounds

Metastability
bounds

Electroweak symmetry breaking

Lecture 2: Theoretical Bounds on the Higgs

Parma International School of Theoretical

Physics, 2009

Mariano Quirós
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The outline of this lecture is

Outline
! Unitarity bounds
! Triviality bounds
! Stability bounds
! Metastability bounds

! Thermal corrections
! Thermal tunneling
! Bounds
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Unitarity bounds

! The longitudinal components of the W and Z bosons
give rise to interesting features

! In the gauge boson rest frame one can define the
transverse and longitudinal polarization four–vectors as

εµ
T1

= (0, 1, 0, 0) , εµ
T2

= (0, 0, 1, 0) , εµ
L = (0, 0, 0, 1)

! For a four–momentum pµ = (E , 0, 0, |"p|), after a boost
along the z direction, the transverse polarizations
remain the same while the longitudinal polarization
becomes

εµ
L =

(

|"p|
mV

, 0, 0,
E

mV

)

E!mV=⇒ pµ

mV

! Since this polarization is proportional to the gauge
boson momentum, at very high energies, the
longitudinal amplitudes will dominate in the scattering
of gauge bosons
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! In processes involving the WL and ZL bosons, this would
eventually lead to cross sections which increase with the
energy which would then violate unitarity at some stage

! We will briefly discuss this aspect in the following,
taking as an example the scattering process
W +W− → W +W− at high energies, which can violate
the unitarity bounds

! We first decompose the scattering amplitude A into
partial waves a! of orbital angular momentum #

A = 16π
∞
∑

!=0

(2# + 1)P!(cos θ) a!

where P!=Legendre polynomials and θ=scattering
angle.

! For a 2 → 2 process, the cross section is given by

dσ/dΩ = |A|2/(64π2s), dΩ = 2πd cos θ

σ =
16π

s

∞
∑

!=0

(2# + 1)|a!|2
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! Unitarity implies the

Optical theorem

σ =
1

s
Im [A(θ = 0) ] =

16π

s

∞
∑

!=0

(2# + 1)|a!|2

! This leads to the

Unitarity condition

|a!|2 = Im(a!) ⇒ [Re(a!)]
2 + [Im(a!)]

2 = Im(a!)

[Re(a!)]
2 + [Im(a!) −

1

2
]2 =

1

4

$

|Re(a!)| <
1

2

! In particular for the J = 0 partial wave

|Re(a0)| <
1

2
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! The unitarity condition is badly violated by the quartic
WL interactions

WL

WL

WL

WL

A ∝ g2 s2

M4
W

⇒ s ≤ M2
W

! This problem can be partly cured by adding the other
SM gauge interactions

a)

WL

WL

WL

WL

γ,Z
+

a0 =
g2s

16πM2
W

⇒
√

s ≤ 1.7TeV



Electroweak
symmetry
breaking

Mariano Quirós

Outline

Unitarity bounds

Triviality bound

Stability bounds

Metastability
bounds

! The problem is fully solved by introducing the Higgs
interactions

b)

WL

WL

WL

WL

H
+

a0 =
g2m2

H

32πM2
W

⇒ mH ≤ 870 GeV

! Channel W +
L W−

L considered above can be coupled with
other neutral ZLZL, HH and ZLH and charged W +

L H

and W +
L ZL channels. The scattering amplitude and a0

is then given by a 6 × 6 matrix. The requirement that
the largest eigenvalues of a0, respects the unitarity
constraint yields

MH ! 710 GeV
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! Goldstone bosons are useful tools to enforce unitarity
because of the

Electroweak Equivalence Theorem

At very high energies, the longitudinal massive vector bosons
can be replaced by the Goldstone bosons.

A(V 1 · · ·V n → V 1 · · ·V n′) ∼ A(V 1
L · · ·V n

L → V 1
L · · ·V n′

L )

∼ A(w1 · · ·wn → w1 · · ·wn′)

! Thus, in this limit, one can simply replace in the SM
scalar potential, the W and Z bosons by their
corresponding Goldstone bosons χ±,χ0, leading to

Higgs-Goldstones interactions

V =
m2

h

2v
(h2 + χ2

0 + 2χ+χ−)h +
m2

h

8v2
(h2 + χ2

0 + 2χ+χ−)2

and use this potential to calculate the amplitudes
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Exercise: compute a0 as

a0 = −
M2

H

16πv2

[

2 +
M2

H

s − M2
H

−
M2

H

s
log

(

1 +
s

M2
H

)]

for the set of diagrams

χ−

χ+

χ−

χ+

χ−

χ+

χ−

χ+

h
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Triviality bound

! The variation of the quartic Higgs coupling with the
energy scale Q is described by the Renormalization
Group Equation (RGE)

RGE

dλ

dlogQ2
* 1

16π2

[

12λ2 + 6λh2
t − 3h4

t

−3

2
λ(3g2

2 + g2
1 ) +

3

16

(

2g4
2 + (g2

2 + g2
1 )2

)

]

h

h

h

h
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! For large values of the Higgs mass (λ) the quartic
coupling dominates the RGE and its solution can be
written analytically

λ(Q2) = λ(v2)

[

1 − 3

4π2
λ(v2) log

Q2

v2

]−1

! When the energy is much higher than the weak scale,
Q2 + v2, the quartic coupling grows and eventually
becomes infinit. This point is called Landau pole

!

Λ = v exp

(

4π2

3λ

)

= v exp

(

4π2v2

m2
h

)

! The general triviality argument states that

Triviality argument

The scalar sector of the SM is a φ4–theory, and for these
theories to remain perturbative at all scales one needs to
have a coupling λ = 0 [which in the SM, means that the
Higgs boson is massless], thus rendering the theory trivial,
i.e. non–interacting
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! One can turn around the argument: fixing the value of
mh one can use the RGE for the quartic Higgs
self–coupling to establish the energy domain in which
the SM is valid, i.e. the energy cut–off Λ below which
the self–coupling λ remains finite

! Alternatively, fixing Λ one can determine an upper
bound on the Higgs mass for the theory to remain
perturbative i.e. for self–coupling λ remains finite

Triviality bound

In the previous approximation

m2
h <

4π2v2

log Λ
v

! If Λ is large, the Higgs mass should be small to avoid
the Landau pole: for Λ ∼ 1016 GeV ⇒ mh ! 200 GeV

! If ΛC is small, the Higgs boson mass can be rather
large: for Λ ∼ 103 GeV ⇒ mh ∼ 1 TeV
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! In particular, if the cut–off is set at the Higgs boson
mass itself, Λ = mh, the requirement that the quartic
coupling remains finite implies that mh ! 700 GeV

! Of course there is a caveat in this argument: when λ is
too large, one cannot use perturbation theory anymore
and this constraint is lost. However, from simulations of
gauge theories on the lattice, where the
non–perturbative effects are properly taken into
account, it turns out that one obtains the rigorous
bound mh ! 640 GeV, which is in a remarkable
agreement with the bound obtained by naively using
perturbation theory

! Triviality bound is an upper bound: for heavy Higgs
masses.

! Next we will study the stability bounds. They are lower
bounds: for light Higgs masses. Together they will
make an allowed window
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! In the region of light Higgs there is another effect of the
RGE for the quartic coupling

RGE

dλ

dlogQ2
* 1

16π2

[

12λ2 + 6λh2
t − 3h4

t

−3

2
λ(3g2

2 + g2
1 ) +

3

16

(

2g4
2 + (g2

2 + g2
1 )2

)

]

! For small values of λ the RGE is dominated by the h4
t

coupling

8π2 dλ

d log Λ
* −3h4

t

and λ decreases with Λ

λ(Λ) * λ(v) − 3

8π2
h4
t log

Λ

v
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! When λ(Λ) < 0 the potential is unbounded from below
! For fixed Λ there is a lower bound on the Higgs mass

m2
h ≥ 3h2

t m
2
t

2π2
log

Λ

v

! For fixed mh there is an upper bound on Λ

Λ ≤ v exp(2π2m2
h/3h

2
t m

2
t )

! A more precise bound of course requires the numerical
solution to the system of couple differential RGE to find
out the scale where λ(Λ) = 0

! Going beyond the one-loop result can be achieved by
using RGE techniques to resum the effective potential
as we will show next
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! The SM effective potential can be written in the ’t
Hooft-Landau gauge and the MS renormalization
scheme as Veff = V0 + V1

SM effective potential

V0 = −1

2
m2(t)φ2(t) +

1

8
λ(t)φ4(t)

V1 =
∑

i=W ,Z ,t

ni

64π2
M4

i (φ)

[

log
M2

i (φ)

µ2(t)
− Ci

]

+ Ω(t)

CW = CZ =
5

6
, Ct =

3

2
, nW = 6, nZ = 3, nt = −12,

M2
i = κiφ

2(t), φ(t) = ξ(t)φc

ξ(t) = exp

{

−
∫ t

0
γ(t ′)dt ′

}

, µ(t) = mZ et

κW =
1

4
g2(t), κZ =

1

4
[g2(t) + g ′2(t)], κt =

1

2
h2(t).
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! The pole masses Mh and Mt

M2
h = m2

h[µ(t)] + Re
[

ΠHH(p2 = M2
h) − ΠHH(p2 = 0)

]

,

Mt =

[

1 +
4

3

αs(Mt)

π

]

mt [Mt ].

! The effective potential improved by RGE is highly scale
independent. This allows fixing the renormalization
scale as µ(t) ∼ φ(t) in order to tame potentially
dangerous logarithms at large values of the field (where
the instability is expected to appear).

! In particular, fixing µ(t) = αφ(t) , allows to translate
the scale-independence of the (whole) effective
potential into the α independence

! We can find out the optimum value α∗ to study the
instability region using the one-loop approximation:
that for which the results are more scale-invariant
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The scale independence in the appropriate region is shown in
the figure

Scale (in)dependence



Electroweak
symmetry
breaking

Mariano Quirós

Outline

Unitarity bounds

Triviality bound

Stability bounds

Metastability
bounds

! We can write the potential as

Veff = −1

2
m2(t)φ2(t) +

1

8
λeffφ4(t) + Ω(t)

from where

λeff(t) = λ(t) +
∑

i

ni

8π2
κ2

i

[

log
κi

α2
− Ci

]

.

! The value of the scale Λ where new physics has to
stabilize the SM potential is given by the value of the
field φ where the depth of the potential equals the depth
of the potential at the standard electroweak minimum

! Due to the steepness of the potential around that point,
we can identify Λ with the value of the field where the
potential vanishes, i.e.

Veff(φ)|φ=Λ = 0 ,
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The effective potential is destabilized at a given value of the
field

Effective potential
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! We have plotted the lower bounds on Mh for Λ = 1 TeV
as functions of Mt.

Mh vs. Mt for Λ = 1 TeV
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The bound as a function of the cutoff scale

Mh vs. Λ
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! The summary of triviality and stability bounds

The Standard Model Window
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Metastability bounds

! Even if the lower bounds on Mh arising from stability
requirements are a valuable indication, they cannot be
considered as absolute lower bounds in the SM since we
cannot logically exclude the possibility of the physical
electroweak minimum being a metastable one, provided
the probability, normalized with respect to the
expansion rate of the Universe, for decay to the
unphysical (true) minimum, be negligibly small

! In view of the future Higgs search at LHC, it is
extremely important that the bounds provided on the
Higgs mass in the SM be as accurate as possible

! The main tools for that should be
! Thermal corrections to the effective potential including

plasma effects by one-loop resummation of Debye
masses

! Numerical calculation of the bounce solution and the
energy of the critical bubble
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Thermal corrections

! The thermal correction to the effective potential can be
computed using the rules of field theory at finite
temperature. Including plasma effects by one-loop ring
resummation of Debye masses

! It can be written as

∆Veff(φ,T ) = V1(φ,T ) + Vring(φ,T )

! The one-loop thermal correction

One-loop correction

V1(φ,T ) =
T 4

2π2





∑

i=W ,Z

niJB

(

m2
i (φ)

T 2

)

+ ntJF

(

m2
t (φ)

T 2

)
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! The thermal functions are given by

Thermal integrals

JB(y) =

∫ ∞

0
dx x2 log

[

1 − e−
√

x2+y2
]

JF (y) =

∫ ∞

0
dx x2 log

[

1 + e−
√

x2+y2
]

! Plasma effects in the leading approximation can be
accounted for by the one-loop effective potential
improved by the daisy diagrams

Hard thermal loops

Vring(φ,T ) =
∑

i=WL,ZL,γL

ni

{

m3
i (φ)T

12π
−

M3
i (φ)T

12π

}
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! Only the longitudinal degrees of freedom of gauge
bosons, 1

2nWL
= nZL

= nγL
= 1, are accounted

! The thermal masses are

Debye corrected masses

M2
WL

= m2
W (φ) +

11

6
g2T 2

M2
ZL

=
1

2

[

m2
Z (φ) +

11

6

g2

cos2 θW
T 2 + ∆(φ,T )

]

M2
γL

=
1

2

[

m2
Z (φ) − 11

6

g2

cos2 θW
T 2 + ∆(φ,T )

]

! The discriminant is responsible for the rotation at finite
temperature from the basis (W3L,BL) to the mass
eigenstate basis (ZL, γL)

∆2 = m4
Z (φ)+

11

3

cos2 2θW

cos2 θW

[

m2
Z (φ) +

11

12

g2

cos2 θW
T 2

]

T 2
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Effective potential at T = Tt = 2.5 × 1015 GeV (thin
solid line), for Mt = 175 GeV and MH = 122 GeV
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Thermal tunneling

! In a first-order phase transition the tunnelling
probability rate per unit time per unit volume is given by

Γ

ν
∼ ωT 4e−Eb/T ,

! Eb (the energy of a bubble of critical size) is given by
the three-dimensional euclidean action S3 evaluated at
the bounce solution

Eb = S3[φB(r)]

! At high temperature the bounce has O(3) symmetry

Euclidean action

S3 = 4π

∫ ∞

0
r2dr

[

1

2

(

dφ

dr

)2

+ Veff(φ(r),T )

]

r2 = "x2
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! The bounce φB satisfies the Euclidean equation of
motion and boundary conditions

Bounce equations

d2φ

dr2
+

2

r

dφ

dr
=

dVeff(φ,T )

dφ

lim
r→∞

φ(r) = 0

dφ

dr

∣

∣

∣

∣

r=0

= 0

! The semiclassical picture is that unstable bubbles
(either expanding or collapsing) are nucleated behind
the barrier, at φB(0), with a probability rate given by Γ

! The actual probability P is obtained by multiplying the
probability rate by the volume of our current horizon
scaled back to the temperature T and by the time the
Universe spent at temperature T
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! The probability is then

dP

d log T
= κ

MP!

T
e−Eb/T

κ ∼ 3.25 × 1086

! The total integrated probability is defined as

P(Tc) =

∫ Tc

0

dP(T ′)

dT ′
dT ′,

Tc is the temperature at which the two minima of the
effective potential become degenerate. In fact, when
T → Tc the probability rate goes to zero, since
Eb(T ) → ∞

! The physical meaning of the integrated probability

Fraction of space in the old metastable (new stable)
phase

fold = e−P , fnew = 1 − e−P
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Plot of dP/d log10 T . Dashed line indicates temperature
Tt = 2.5 × 1015 GeV at which the integrated probability
is 1
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Plot of the effective potential atTt = 2.5 × 1015 GeV
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Bounds
! We have analyzed systematically cases with different

values of Mh and different values of the cutoff Λ as e.g.

The case Λ = 1019 GeV
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A fit to the case Λ = 1019 GeV

Mh/GeV = [2.278 − 4.654 (αS − 0.124)] (Mt/GeV) − 277

A general fit

MH/GeV = A(Λ)(Mt/GeV) − B(Λ)

log10(Λ/GeV) A(Λ) B(Λ)
4 1.219 157
5 1.533 186
7 1.805 212
9 1.958 230
11 2.071 245
13 2.155 258
15 2.221 268
19 2.278 277
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Mh as a function of Λ
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Mh for Λ = 104 GeV (lower solid line)–1019 GeV (upper
solid line). The dashed lines are the absolute stability
bounds for Λ = 103 GeV (lower dashed line), 104 GeV
and 1019 GeV (upper dashed line)
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Outline

The outline of this lecture is

Outline
! Standard Model observables
! Oblique corrections
! The ρ parameter
! STU − ε formelism
! Zbb̄ coupling
! Indirect constraints
! Direct constraints
! Outlook: Motivation for BSM
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Standard Model observables

! Observables are written with a hat on top of them
! Some observables are

! α̂ (from Thomson limit),
! ĜF (from muon decay),
! m̂Z (Z boson mass),
! m̂W (W boson mass),
! Γ̂l+l− (leptonic partial width of the Z boson), and
! ŝ2

eff
(effective sin2 θW )

! The value of ŝ2
eff is defined to be the all-orders rewriting

of ÂLR as

ÂLR =
Γ(Z → fLf̄L) − Γ(Z → fR f̄R)

Γ(Z → fLf̄L) + Γ(Z → fR f̄R)
=

g2
L − g2

R

g2
L + g2

R

≡
(1/2 − ŝ2

eff)2 − ŝ4
eff

(1/2 − ŝ2
eff)2 + ŝ4

eff
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! At tree level we need only three lagrangian parameters
to compute the six observables listed above. The three
parameters are v (Higgs vacuum expectation value) and

! g (SU(2) gauge coupling)
! g ′ (U(1)Y gauge coupling)

! We trade these two parameters for an equivalent set
! e (the electric charge): g = e/s, g ′ = e/c
! s(= sin θW )

! The observables can be expressed at tree-level as

Tree-level observables and experimental values

! α̂ = e2

4π
; α̂exp = 1/137.0359895(61)

! ĜF = 1√
2v2 ; Ĝ exp

F = 1.16639(1)× 10−5 GeV−2

! m̂2
Z = e2v2

4s2c2 ; m̂exp
Z = 91.1876± 0.0021 GeV

! m̂2
W = e2v2

4s2 ; m̂exp
W = 80.428± 0.039 GeV

! ŝ2
eff

= s2; (ŝ2
eff

)exp = 0.23150± 0.00016

! Γ̂l+ l− = v
96π

e3

s3c3

[

(

− 1
2 + 2s2

)2
+ 1

4

]

;

(Γ̂l+ l−)exp = 83.984± 0.086 MeV
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! The real question that a theory must answer is, Can we

reproduce all experimental results with suitable choices

of our input parameters?
! We have a set of observables Ôexpt

i with uncertainties

∆Ôexpt
i . The theory makes predictions Oth

i for the
observables that depend on the lagrangian parameters

! We find the best possible choices of the lagrangian
parameters that fit the data by minimizing the χ2

function

χ2(e, s, v) =
∑

i

(Ôexpt
i −Oth

i (e, s, v))2

(∆Ôexpt
i )2

where i sums over the observables
! The predictions of m̂W , ŝ2

eff and Γ̂l+l− in this particular
tree-level procedure are approximately 15σ, 120σ and
10σ off from their experimentally measured values

! Should we conclude that the theory is not compatible
with experiment?

! We must go to higher-order in the coupling constants
to truly test the viability of the SM
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Oblique corrections

! They are corrections that arise only from the self-energy
corrections of the γ, W±, and Z vector bosons.

! A complete analysis will all corrections explicitly
computed is much more complicated but it is similar
conceptually

! In BSM theories it is most common that the non-oblique
corrections have a small effect compared to the oblique
corrections. This is generally true in supersymmetry,
with the notable exception of the Z → bb̄ coupling

! One main reason for the dominance of oblique
corrections over non-oblique corrections is that any
charged object couples to the vector bosons, whereas
usually only one or two particles in a theory couple to a
specific fermion species

! The sum over all contributors in self-energies wins out
over the one or two diagrams that couple to an
individual final state fermion
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! The one-loop corrections to the vector boson
self-energies

Oblique corrections

Vµ V ′
µ

q −→

i [ΠVV ′(q2)gµν − ∆VV ′(q2)qµqν ]

! Only the ΠVV ′ piece of the self-energies since the qµ

part of the second term is coupled with a light-fermion
current and is zero by the Dirac equation

qµJ light fermion
µ → f̄ γµqµf → f̄ mf → 0.

! The way the self-energies are defined, they add to the
vector boson masses by convention:

m2
V → m2

V + ΠVV (q2 = m2
V )
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! The correction of Z and W masses is

Z and W masses

(m̂2
Z )th =

e2v2

4s2c2
+ ΠZZ (m2

Z )

(m̂2
W )th =

e2v2

4s2
+ ΠWW (m2

W )

! The theory prediction for α̂ comes from

+
Aµ Aµ Aµ

−i
4πα̂

q2

∣

∣

∣

∣

q2→0

=
−ie2

q2

[

1 +
Πγγ(q2)

q2

]

q2→0

α̂

(α̂)th =
e2

4π

(

1 + Π′
γγ(0)

)
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! ĜF is computed from the lifetime of the muon

µ
−

W −

+

ĜF

(ĜF )th√
2

=
g2

8m2
W

[

1 + iΠWW (q2)

(

−i

q2 − m2
W

)]

q→0

=
1

2v2

[

1 −
ΠWW (0)

m2
W

]

! The definition of ŝ2
eff is chosen such that observable Â#

LR

is written in terms of ŝ2
eff using the tree-level expression

above with s2 → ŝ2
eff . This is an unambiguous definition



Electroweak
symmetry
breaking

Mariano Quirós

Outline

Standard Model
observables

Oblique
corrections

The ρ parameter

STU-ε formalism

Z → bb̄ coupling

Indirect
constraints

Direct constraints

BSM

! The observable associated with ŝ2
eff requires correcting

gL =
e

sc
(T 3 − Qs2) and gR = −

−eQs2

sc
! We can neglect all ΠZZ contributions since they will

only affect the overall factor of gL and gR which cancels
! The Z − A mixing self-energy does contribute

Zµ

fL,R

f̄L,R
Zµ Aµ

fL,R

f̄L,R

+

! gL and gR expressions are the tree-level expressions
except s2 → s2 − scΠγZ (m2

Z )/m2
Z in the numerator

ŝ2
eff

(ŝ2
eff)2 = s2 − sc

ΠγZ (m2
Z )

m2
Z
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! Finally for Γ̂l+l− the relevant diagrams are

Zµ

+
Zµ Aµ,Zµ

Γ̂l+l−

(Γ̂l+l−)th =
ZZ

48π

e2

s2c2
m̂Z

[

(

−
1

2
+ 2(ŝ2

eff)th
)2

+
1

4

]

ZZ = 1 + Π′
ZZ (m̂Z ) + higher order terms

! ΠγZ had the effect of just putting s2 → (ŝ2
eff)th into the

numerator
! The parameter ZZ is a wavefunction residue piece
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The ρ parameter

! The relative strength of the charged and neutral
currents, Jµ

ZJµZ/Jµ+J−
µ can be measured by

ρ =
M2

W

c2
W M2

Z

! It is equal to 1 in the SM. A direct consequence of the
choice of the representation of the Higgs field
responsible of the breaking of the electroweak symmetry

! In a model which makes use of an arbitrary number of
Higgs multiplets Φi with isospin Ti ,

ρ =

∑

i

[

Ti (Ti + 1) − (T 3
i )2

]

v2
i

2
∑

i(T
3
i )2v2

i

which is also unity for an arbitrary number of doublet
[as well as singlet] fields.

! This is due to the fact that in this case, the model has
a custodial SU(2) global symmetry.
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! The SM lagrangian has a global SU(2) symmetry in the
limit g ′ → 0 and equal fermion masses of the same
doublet

! This symmetry appears as follows: the field H has 4
real components and in the Higgs lagrangian there is an
associated O(4) symmetry broken to O(3) & SU(2) at
the electroweak breaking

! In the SM, the custodial symmetry is broken at the loop
level when fermions of the same doublets have different
masses and by the hypercharge group.

! One can define an effective mixing angle and its relation
with the ρ parameter as

s̄2
W = 1 −

M2
W

M2
Z

+ c2
W

(

ΠWW (M2
W )

M2
W

−
ΠZZ (M2

Z )

M2
Z

)

∼ 1 −
M2

W

M2
Z

+ c2
W ∆ρ
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! Because mt is large, the contributions are approximately
the same at the scale q2 ∼ 0 or q2 ∼ M2

V ; in addition
the light fermion contributions to ΠWW and ΠZZ

almost cancel in the difference, ∼ log MW /MZ

! One usually writes the correction to the ρ parameter as

ρ parameter

ρ =
1

1 − ∆ρ
, ∆ρ =

ΠWW (0)

M2
W

−
ΠZZ (0)

M2
Z

! The large mass splitting between the top and bottom
quark masses breaks the custodial SU(2) symmetry and
generates a contribution which grows as the top mass
squared

One-loop top quark contribution to the ρ parameter

∆ρ =
3Gµm2

t

8
√

2π2
∼ 0.01

! Exercise: compute ΠVV (q2) from fermion loops



Electroweak
symmetry
breaking

Mariano Quirós

Outline

Standard Model
observables

Oblique
corrections

The ρ parameter

STU-ε formalism

Z → bb̄ coupling

Indirect
constraints

Direct constraints

BSM

! At the one–loop level the Higgs boson contributes

One-loop Higgs contribution to the ρ parameter

(∆ρ)Higgs = −
3GµM2

W

8
√

2π2
f

(

M2
H

M2
Z

)

f (x) = x

[

ln c2
W − ln x

c2
W − x

+
ln x

c2
W (1 − x)

]

! The contribution vanishes in the limit s2
W → 0 or

MW → MZ , i.e. when g ′ → 0
! For a very light Higgs boson the correction vanishes

(∆ρ)Higgs → 0 for MH ( MW

! For a heavy Higgs boson

(∆ρ)Higgs ∼ −
3GµM2

W

8
√

2π2

s2
W

c2
W

log
M2

H

M2
W

! The logarithmic dependence is the “Veltman screening
theorem”
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STU-ε formalism

! It is convenient to parametrize the radiative corrections
to electroweak observables in such a way that the
contributions due to many kinds of New Physics beyond
the SM are easily implemented and confronted with the
experimental data

! If one assumes that the symmetry group of New Physics
is still SU(3)C × SU(2)L × U(1)Y and that it couples
only weakly to light fermions so that one can neglect all
the “direct” vertex and box corrections, one needs to
consider only the oblique corrections, that is, the ones
affecting the γ,Z ,W two–point functions and the Zγ
mixing

! If the scale of the New Physics is much higher than
MZ , one can expand the complicated functions of the
momentum transfer Q2 around zero, and keep only the
constant and the linear Q2/M2

NP terms of the series
which have very simple expressions in general
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! The New Physics contributions can be then expressed in
terms of six functions

Functions parametrizing New Physics

Π′
γγ(0), Π′

Zγ(0), ΠZZ (0), Π
′

ZZ (0), ΠWW (0), Π
′

WW (0)

QED Ward identities ⇒ Πγγ(0) = ΠZγ(0) = 0

Lnew = −
Π′

γγ(0)

4
FµνFµν−

Π′
WW (0)

2
WµνW

µν−
Π′

ZZ (0)

4
ZµνZ

µν

−
Π′

γZ (0)

2
FµνZ

µν − ΠWW (0)W +
µ W µ− −

ΠZZ (0)

2
ZµZµ

! Three of these functions will be absorbed in the
renormalization of the three input parameters α,Gµ and
MZ
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! This leaves three variables which one can choose as
being ultraviolet finite and related to physical
observables

! A popular choice of the three independent variables is
the STU linear combinations of self–energies introduced
by Peskin and Takeuchi

STU parameters

αS =

4s2
W c2

W

[

ΠZZ (0) − (c2
W − s2

W )/(sW cW ) · Π′
Zγ(0) − Π′

γγ(0)
]

αT = ΠWW (0)/M2
W − ΠZZ (0)/M2

Z

αU =

4s2
W

[

Π′
WW (0) − c2

W Π′
ZZ (0) − 2sW cW Π′

Zγ(0) − s2
W Π′

γγ(0)
]

! The variable αT is simply the shift of the ρ parameter
due to the New Physics, αT = 1 − ρ − ∆ρ|SM
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! Another parametrization of the radiative corrections,
the ε approach of Altarelli and Barbieri is more directly
related to the precision electroweak observables

! The three variables which parametrize the oblique
corrections are defined in such a way that they are zero
in the approximation where only SM effects at the
tree–level, as well as the pure QED and QCD
corrections, are taken into account

! Defining ∆rW and ∆k as

M2
W /M2

Z

(

1 − M2
W /M2

Z

)

= s2
0c2

0 (1 − ∆rW )

sin2 θlep
eff = (1 + ∆k)s2

0

with
s2
0c2

0 = πα(MZ )/(
√

2GµM2
Z )
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! The variables defined by Altarelli and Barbieri are

ε parameters

ε1 = ∆ρ

ε2 = c2
0∆ρ +

s2
0

c2
0−s2

0
∆rW − 2s2

0∆k

ε3 = c2
0∆ρ + (c2

0 − s2
0 )∆k, ε4 = ∆b

Experimental values of ε parameters

ε1 = −0.0009 ± 0.0008(−0.0006)

ε2 = −0.0006 ± 0.0009(+0.0007)

ε3 = −0.0013 ± 0.0009(−0.0001)

Mh = 117 (300) GeV

! ∆b is non-oblique correction to Z → bb̄
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Z → bb̄ coupling

! In the context of precision tests, the Z boson decays
into bottom quarks has a special status

1. Because of its large mass and relatively large lifetime
the b quark can be tagged and experimentally separated
from light quark and gluon jets allowing an independent
measurement of the Z → bb̄ partial decay width

2. Large radiative corrections involving the top quark and
not contained in ∆ρ appear

Z → bb̄ one-loop diagram

•

•

•t

t̄

b

b̄

Z

W ,χ± •

•

•b

b̄

b

b̄

Z

h
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! These corrections can be accounted for by shifting the
reduced vector and axial–vector Zbb̄ couplings by the
amount

âb → 2T 3
b (1 + ∆b) , v̂b → 2T 3

b (1 + ∆b) − 4Qbs
2
W

! For a heavy top quark, the correction can be cast into a
rather simple form

∆b = −
Gµm2

t

4
√

2π2
−

GµM2
Z

12
√

2π2
(1 + c2

W ) log
m2

t

M2
W

+ · · ·

This correction is large being approximately of the same
size as the ∆ρ correction

! The Higgs contribution

∆1−Higgs
b ∝

Gµm2
b

4
√

2π2

Because the b–quark mass is very small compared to
the W boson mass, m2

b/M
2
W ∼ 1/250, this contribution

is negligible in the SM
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Indirect constraints on the Higgs

mass

α(MZ ),Gµ and MZ can be used as basic input parameters.
Then the other observables can be predicted as a function of
the Higgs mass

! Observables from the Z lineshape at LEP1: ΓZ , the
peak hadronic cross section σ0

had, Γ(Z → ), c , b)
normalized to the hadronic Z decay width, R#,c,b, Af

FB

for leptons and heavy c , b quarks, Aτ
pol;

! Af
LR which has been measured at the SLC as well as the

left–right forward–backward asymmetries Ab,c
LR,FB

! mW and ΓW precisely measured at LEP2
! High–precision measurements at low energies

! The νµ– and ν̄µ–nucleon deep–inelastic scattering cross
sections

! The parity violation in the Cesium and Thallium atoms
which provide the weak charge QW that quantifies the
coupling of the nucleus to the Z boson
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Electroweak observables

MH   [GeV]

*preliminary

ΓZΓZ
σhadσ0

RlR0

AfbA0,l

Al(Pτ)Al(Pτ)
RbR0

RcR0

AfbA0,b

AfbA0,c

AbAb
AcAc

Al(SLD)Al(SLD)
sin2θeffsin2θlept(Qfb)
mW*mW

ΓW*ΓW

QW(Cs)QW(Cs)
sin2θ−−(e−e−)sin2θMS

sin2θW(νN)sin2θW(νN)
gL(νN)g2

gR(νN)g2

10 10
2

10
3
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Indirect search limit

mH < 144 GeV 95%C .L.

0

1

2

3

4

5

6

10030 300
mH [GeV]

Δ
χ2

Excluded Preliminary

Δαhad =Δα(5)

0.02758±0.00035
0.02749±0.00012
incl. low Q2 data

Theory uncertainty
mLimit = 144 GeV
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Direct constraints on the Higgs mass

! The Higgs boson has been searched for at the LEP1
experiment at

√
s & MZ . The dominant production

mode is the Bjorken process where the Z boson decays
into a real Higgs boson and an off–shell Z boson which
goes into two light fermions

Main production mechanism for Higgs bosons at LEP1

•

•
f

f̄Z

h

Z ∗

! The Higgs boson can also be produced in the decay
Z → Hγ which occurs through triangular loops built–up
by heavy fermions and the W boson
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! The search for Higgs bosons has been extended at
LEP2

√
s = 209 GeV. The dominant production process

is Higgs–strahlung where the e+e− pair goes into an
off–shell Z boson which then splits into a Higgs particle
and a real Z boson

Main production mechanism for Higgs bosons at LEP2

• •

e−

e+

Z ∗

h

Z

! Combining the results of the four LEP collaborations
the exclusion limit

Mh > 114.4 GeV

has been established at the 95% CL
! There is a 1.7σ excess (not significant) of events for a

Higgs boson mass in the vicinity of MH = 116 GeV .
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Higgs production at hadron colliders

q

q̄

g

g

CDF and D0 have recently reported an exclusion region

160 GeV < Mh < 170 GeV

at 95 % CL, from h → WW
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Outlook: Beyond the Standard Model

Standard Model Drawbacks
! Big Hierarchy problem: The Higgs mass is sensitive to

UV physics. Quantum corrections are quadratically
sensitive to the cutoff Λ

∆m2
H(F ,B) = ∓

nF ,Bg2
F ,B

16π2
Λ2

They are not protected by any symmetry which is
enhanced when mH = 0

! On the contrary fermions masses ∆mF ∝ mF

16π2 log Λ are
protected by chiral symmetry for mF = 0

! Electroweak symmetry breaking requires a tachyonic
mass for the Higgs

! Dark Matter: there is no candidate
! There is no gauge coupling unification
! Strong CP-problem: axion required
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The Little Hierarchy Problem/LEP paradox
! The leading quantum correction to the Higgs mass

parameter is expected to come from the top sector as

∆m2
H = −

3h2
t

8π2
Λ2

! In the absence of tuning this implies a lower bound on
the cutoff scale as

Λ < 600GeV
( mH

200GeV

)

! Why did LEP not detect any deviation from the SM
predictions? (LEP paradox)

! In particular one can parametrize the new effects as
non-renormalizable operators (d = 6)

Leff =
c1

Λ2
(ēγµe)2 + . . .

! If ci = O(1) ⇒ Λ > 10 TeV ⇒ tension
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Possible solutions to the Higgs hierarchy problems are
motivating the presence of New Physics

Hierarchy Problem ⇒ New Physics
! Supersymmetry: bosonic (fermionic) partners cancel the

quadratic divergences produced by fermions (bosons)
[Carlos Wagner’s lectures]

! Higgs condensate that “dissolves” at high energies ⇒
strongly interacting gauge sector at TeV scales:
technnicolor, top-quark condensate,... [Adam Martin’s
lectures], holographic Higgs [Christophe Grojean’s
lectures]

! Higgs as pseudoGoldstone boson: little Higgs theories
and gauge-Higgs unification in higher dimensions
[Christophe Grojean’s lectures]

! Higgsless theories: EWSB by boundary conditions in
extra dimensions [Christophe Grojean’s lectures]


